Smallsat and CubeSat solar panels on the global market

Roundup

In this post we give a brief overview of satellite and CubeSat solar panels and arrays, sharing listings of multiple products available on the global marketplace – if you would like to skip the introductory material and instead get straight to the product listings, please click here.

Unlike larger satellites where the surface area available on the external structures is much greater, CubeSats, nanosatellites and other small satellites have far less volume that can be given to solar panels.

A 1U CubeSat for example will have an area of just 10 cm x 10 cm on each face in order to accommodate a solar panel.

In addition, solar panels can also not be mounted on surfaces that need to accommodate other components, such as planar antennas, optical sensors, camera lenses, and access ports.

In spite of these limitations there are several different solar panels available on the market, featuring a variety of solar cells for space applications, which work with the severe physical restrictions imposed by smallsats and the CubeSat (and smaller) form factor.

Key performance criteria for selecting the right solar panel

Aside from the size of the panels themselves, there are several important criteria to consider when choosing the satellite solar panel or array:

  • Generation of energy in accordance with the orbit functioning requirements of the satellite
  • Compliance with the voltage and current levels acceptance by the power conditioning and distribution system within the satellite
  • Compliance to launch vehicles and the loads specified by launch providers
  • Compatibility with the temperature range that the satellite can face during launch and in orbit
  • Compatibility with all the materials used within the satellite and the nature of their behavior due to thermal expansion and contraction during launch and orbit
  • Reliable actuation for deployment of the panels (there are multiple options available such as flexible joints, shape memory alloys, torsion spring in hinge, coil springs, motors, etc.)
  • Ability to withstand physical launch stresses

Alongside the supplier location, heritage and similar commercial factors that influence satellite solar panel costs, these criteria should be used to assess what system will work best for your mission and timescales.

manufacture of satellite solar panels

Integration of solar panels with other sub-systems

For a satellite solar panel to work effectively it needs to be successfully integrated into the craft alongside the other equipment in use.

Here are a few tips and tricks on how to integrate a panel efficiently with other sub-systems in order to gain more value than simply generating power:

  • To allow easier integration and flexibility while assembling a smallsat, nanosat or CubeSat, solar panels can be efficiently packaged along with other sub-systems, such as structures. A mechanical back plate design, based on aluminium machined alloy, may be used with standard solar panel mounting holes to perform such an integration.
  • Sensor packages including an accelerometer, gyroscope, magnetometer, coarse sun sensor and temperature sensor (external and internal) can be integrated into such a design in order to accommodate elements of the attitude control and electrical power system.
  • Multiple independent Remove Before Flight (RBF) circuits can be added in different locations (X,Y or Z solar panels) in order to comply with different deployers’ and launch service providers’ requirements.
  • It is possible to embed magnetorquers that can be configured to provide different levels of torque and power consumption in order to comply with different mission profiles.

Deployable solar panels

Traditionally smaller satellites have not had deployable arrays to generate more power for advanced missions or more power-hungry payloads.

Today, due to advances in new technology and electronic minitiarisation, it is possible for smaller satellites to use various deployable solar array solutions.

Such technology typically utilises a ‘hold down and release mechanism’ using a spring-loaded slider that ensures safe and effective hold down functionality for the deployable panels.

The slider is locked by a locking arm system that can be released with a dedicated pin-pusher for deployment.

Satellite solar panels on the global marketplace

In the list below we have rounded up a range of commercially-available satellite solar arrays and panels on the global marketplace for space.

If you require further information on structural or power generation satellite sub-systems we have also published roundups of Electrical Power Systems (EPS) and satellite structures on the global marketplace.

Please note that this list will be updated when new products are added to the marketplace – so please check back for more or sign up for our mailing list to get all the updates.


The SM-SP family of solar panels by NPC Spacemind

NPC Spacemind solar panels on satsearch
Satsearch member

The NPC Spacemind SM-SP portfolio is a family of solar panels designed to provide a modular and flexible solution for nanosatellite applications. The products are fully compliant with SM Cubesat Structures as well as with other COTS and custom CubeSat components. As standard, the SM Solar panels include a set of sensors such as thermal sensor, coarse sun sensor, IMU9DOF and a user-definable communication port.

An optional, embedded and configurable magnetorquer (MTQ) is available, along with up to 4 separate RBF circuits. For individual mission requirements specific solutions can be developed, both in terms of electrical performances and specific panel shape and cutout. The different products in the range are:

The SM-SP1X 1U CubeSat XY Solar Panel and SM-SP1Z 1U Cubesat Z Solar Panel – 1U solar panels compatible with 1U, 2U and 3U structures; featuring high-efficiency triple-junction UTJ solar and 2 parallel picoblade power connectors.

The SM-SP2X 2U CubeSat Solar Panel – 2U solar panels featuring high-efficiency triple-junction UTJ solar and 2 parallel picoblade power connectors.

The SM-SP3X 3U XY CubeSat Solar Panel – compatible with 3U CubeSat structures, featuring 4 parallel picoblade power connectors and IMU 9DOF – 3xAcc/3xGyro/3xMag Sensors.

The SM-SP00 Solar Panel Interstage – an interstage to be integrated in NPC Spacemind’s 2U CubeSat structure, between 2 single SP1X solar panels on the XY side. It can also be included in NPC Spacemind’s 3U CubeSat structure in case single SP1X solar panels are utilized. In this case 2 SP00 should be integrated on each XY side.

The SM-SP12X 6U XY CubeSat Solar Panel and SM-SP12X 6U Z CubeSat Solar Panel – suitable for 12U CubeSats and featuring high-efficiency triple-junction UTJ solar and 4 parallel picoblade power connectors.


The CubeSat solar panel portfolio of EnduroSat

Satsearch member

EnduroSat manufactures a range of both static and deployable solar panels in several different CubeSat sizes:

1U Solar Panel Z – utilizing two highly efficient triple junction solar cells and supporting multiple integrated sensors.

1U Cubesat solar panel X/Y – equipped with 2 CESI Solar cells of type CTJ30, with up to a 29.5% efficiency. The wide effective cell area is designed to maximize available space and provide large amounts of power for 1U CubeSats.

1.5U Cubesat solar panel – equipped with 3 CESI Solar cells of type CTJ30, with up to a 29.5% efficiency. The wide effective cell area provides up to 3.6 W per panel in LEO and the PCB of the solar panel contains a network of sensors and an optional magnetorquer, which can be interfaced to an Attitude Determination and Control System (ADCS).

3U Cubesat solar panel – equipped with 7 CESI Solar cells of type CTJ30, with up to a 29.5% efficiency. Featuring a network of integrated sensors and a magnetorquer that can be interfaced to an Attitude Determination and Control System (ADCS).

3U Deployable Solar Array – utilizing 14 highly-efficient triple junction solar cells arranged into 1 fixed + 1 deployable panels. Fully compliant with the CubeSat standard, the deployable solar array doubles the energy generation capability of your satellite.


The DSA portfolio by the Ecuadorian Space Agency (EXA)

1U Deployable Solar Panels DSA/1A on satsearch
Satsearch member

The 1U Deployable Solar Panels DSA/1A is the entry level product of a family of deployable solar arrays for CubeSats in the range of 1U to 6U. The 1U is normally body-mounted and not deployable, and consists of a 2-cell configuration.

The deployable panels from EXA are composed of 5 panels, 3 on the top and 2 on the bottom, that attach to the CubeSat structure just as another solar panel. Once in orbit the array deploys to its full extension. The system includes deploy and release contact sensors and custom options are available on request, such as sun and temperature sensors, a 7-panel configuration or a choice of solar cells.

EXA DMSA on satsearch

The EXA DMSA/1 (Deployable Multifunction Solar Array for 1U) is an upgraded version of the DSA 1/A. It features deployable functionality based on ‘artificial muscles’ for CubeSats in the range of 1U to 6U. The arrays fold into a panel attached to the CubeSat structure, as another solar panel, and once in orbit deploy to full their extension.

The system includes deploy and release contact sensors and its own deploy control board. It also features embedded antennas that range from the VHF to the L-band and embedded magnetorquer, sun, and temperature sensors. The maximum folded thickness is 6.25 mm for the 3-panel array and it is possible to configure different solar cells for very high-power missions.


Solar panels and arrays by Blue Canyon Technologies

Blue Canyon Technologies 3U Solar Array on satsearch
Blue Canyon Technologies on satsearch

Blue Canyon Technologies manufactures solar panels and arrays for smallsats. The products are available in various different configurations, from simple body-mounted panels to multi-wing deployed arrays with the option to gimbal up to two arrays. Functionality is included for solar array input power, on-board or external batteries, charge control (Peak Power or Direct Energy), power regulation and distribution, and data acquisition. The products are:

3U Solar Array – with solar array power from 28 to 42 W and bus voltage of 6.18 VDC.

6U/12U Solar Panel – with solar array power from 48 to 118 W and bus voltage of 19.2 to 38.4 VDC.

Microsat Solar Panel – with solar array power from 192 to 384 W and bus voltage of 38.4 VDC.


The solar panel portfolio of DHV Technology

DHV Technology solar panels on satsearch

DHV Technology manufactures solar panels in a range of sizes with both standardised and custom models available. The models have extensive flight heritage and are thoroughly tested under different launch loads and at various temperatures. The individual products are:

1U solar panel – 2.42 W panels that can feature a magnetometer, temperature sensor and sun sensor.

3U solar panel – double deployable solar panels with 29.6 W power (4 x strings) and weighing approximately 410g.

6U/12U solar panel – CubeSat-compatible solar panels available in customised sizes and in honeycomb substrates, polyimide and aluminium.


Photon Solar Panels (1U, 2U, 3U, 6U, 12U) by AAC Clyde Space

Photon Solar Panels (1U, 2U, 3U, 6U, 12U) on satsearch

Designed and qualified for maximum power generation and ease of platform integration, the Photon panels aim to provide maximum power generation from any side of the satellite. In order to provide additional capacity to the CubeSat it is possible to add deployable solar panels to the spacecraft deployed along the long edge of the spacecraft and these can be single, double or even triple deployable depending on customer power requirements. The panels primarily use Spectrolab XTJ-Prime solar cells but AAC Clyde Space also has experience working with AZUR and SolAero alternatives.

All Photon Solar Panels are constructed from aluminum coupled with PCB inserts and proprietary hold down release mechanisms, leveraging decades of in-orbit heritage. The panels are constructed from low out-gassing materials, and are staked and head-locked for flight. The side solar panels are designed to fit at the side plates of AAC Clyde Space CubeSat structures and are designed to NASA GEVS standards.


Fixed and Deployable Solar Panels and Arrays by Pumpkin, Inc.

Pumpkin solar panels on satsearch

Pumpkin, Inc. manufactures a range of 1/1.5/2/3U fixed side panels and 1/1.5/2/3U/6U deployable panels for CubeSats and nanosatellites. The panels are space-proven and have been deployed from LEO to GTO orbits. They feature the Pumpkin Modular Deployable Solar Array System (PMDSAS) and all-cell / interconnect / coverglass (CIC) construction with triple-junction cells. The solar cells have an efficiency rating of 30.7% or better and are tested to NASA GEVS (14grms) levels.


Solar panels by Innovative Solutions In Space B.V. (ISIS)

ISIS 1U cubesat solar panel on satsearch

ISIS manufactures a range of CubeSat solar panels available both in single panels and as arrays. The panels are body-mounted on aluminimum substrate and include sun and temperature sensors. Available from 1U to 12U sizes, the panels are made from GaAs triple-junction solar cells manufactured by AZUR Space and are provided with protective cover and harnessing. The specific products available are:


Thanks for reading! If you would like any further help identifying a solar panel for satellites you are designing, please file a request on our platform and we’ll use our global network of suppliers to find an option.

Have you noticed that your product isn’t included in this article? Send us an email today today we’d be happy to work with you to showcase it to the satsearch community!

cubesat
engineering
procurement
small satellite
solar panels
supply chain

related articles

Blog home

Microsatellite and CubeSat platforms on the global market

CubeSat thrusters and small satellite propulsion systems

Ground station service providers: an overview of telemetry and telecommand communication services and networks for small satellites