This article is an overview of satellite GNSS and CubeSat GPS receiver technologies available on the global marketplace. If you are familiar with this technology and would like to skip down to view the product listings, please click here.
There is growing demand for Global Positioning System (GPS) receivers that enable small satellites to achieve attitude and orbit control, orbital transfers, and end-of-life deorbiting.
In this article we provide a gentle primer to the topic of selecting a smallsat or CubeSat GPS receiver for a satellite mission and give an overview of some of the navigation and positioning products making waves in the global marketplace for space.
In the next few sections we take a brief look at how GPS receivers work and discuss what key performance characteristics need to be taken into account when selecting a product for your operation.
Do you know of any smallsat GPS receiver that we’ve missed? Please drop us a note at [email protected] or on Twitter. Alternatively, if you’d like to list your products and services on satsearch, get started here.
Please note that this aspect of the supply chain has recently been undergoing a number of changes with new suppliers and products coming to market – we will therefore keep this post updated over time with new product and service information. To stay up to date, please consider bookmarking this page and subscribing to our weekly newsletter at the link below.
Introduction
Selecting the most appropriate CubeSat GPS receiver, or small satellite version, can be a tricky challenge.
The rapid growth of the NewSpace sector has led to greater use of modular components and several manufacturers are now producing CubeSat GPS receivers as independent products.
Selecting the right GPS receiver is important for ensuring the ease of operations of your satellite.
In this article, we look at some of the factors that should be taken into account to make this decision. We also provide an overview of a number of GPS receivers on the market, all of which are listed on the satsearch platform to help you select the best option.
GPS receivers are ubiquitous in many ground-based applications, from large-scale industrial transport navigation systems to fitness trackers and smartphones. However, using GPS receivers in space is a much more challenging task compared to normal terrestrial use.
Most terrestrial applications use Commercial Off The Shelf (COTS) components designed for specific operations and featuring typical characteristics needed for ground-based use. The difference between such uses and space-based GPS is not just in the components used but also in the software embedded, as GPS receivers made for terrestrial use typically are not tuned to accommodate the large variations in the received signal Doppler frequencies that are usually the case with satellites orbiting the Earth.
Aside from such technical limitations there are also regulatory issues such as the requirements set by the International Traffic on Arms Regulations (ITAR) which do not allow GPS receivers to provide navigation outputs after they exceed the ITAR limits of 60,000 feet and 1,000 knots. Therefore, GPS receivers often come with export control restrictions that depend on the end-user requirements. Be sure to check with the suppliers if they are able to actually serve you before considering testing a particular GPS receiver at the design stage.
Despite the limitations GPS receivers have been shown to be very useful for a range of in-orbit processes such as:
- Precise orbit determination
- Onboard time synchronization and geocoding of payload information
- Autonomous orbit control and manoeuvre planning
- Spacecraft formation flying
- Onboard attitude determination
Key performance criteria
Now that you’re armed with the knowledge of what a GPS receiver needs to do you can make an informed decision from the available products, based on your required performance characteristics.
Some of the potential key specifications and performance criteria to evaluate for each product are:
- Number of channels
- Number of antennae
- Frequencies
- Position accuracy
- Velocity accuracy
- Update rate
- Power consumption
- Time-To-First-Fix (TTFF)
These provide a snippet of the technical details that are necessary to evaluate as part of your selection process. In addition, there are the typical criteria for any major purchase such as; cost, delivery time, supplier reputation and location (particularly regarding any export controls, as mentioned above), contract details and maintenance conditions to take into account.
Finally, it’s important to note that selection of a GPS receiver for your satellite is an iterative process, as is the case for virtually every other component of your overall system.
Smallsat and CubeSat GPS receivers on the market
In this section, you can find a range of GPS receivers available on the global market. These listings will be updated when new gps receiving products are added to the global marketplace for space at satsearch.co – so please check back for more or sign up for our mailing list for all the updates.
We have also put together overviews of X-band transmitters, S-band transmitters and S-band antennas to help you evaluate additional satellite communications systems.
Get more information on all products listed at the click of a button
We can help you access quotes, lead times, or any other information from all of the suppliers listed below (and more) with our simple, free tender system. Just share your details with us and wait for the responses to arrive in your inbox.
Celeste The GNSS receiver by Spacemanic
A reliable multi-GNSS receiver module with flight heritage on several space missions. The system suits the GPS, Glonass or Beidu global navigation satellite systems, and complies with selected ECSS norms. The receiver weighs 25g and has an average power consumption of ±100mW on a 3.3V or 5V power supply. It has an area of 67 x 42 mm and is compatible with a Spacemanic motherboard (PC/104 form factor). The supplier also provides dedicated integration assistance to ensure compatibility.
The GNSS Receiver portfolio of GranStal Solutions
The GS50 GNSS Receiver – consists of two configured GNSS receivers; a GPS+GLONASS and a GPS+BD2-B1 dual-mode receiver, either by replacing the front end of the receiver filter and built-in embedded program to perform a state change. The system enables rapid hot start location and is designed for accuracy and low power consumption.
The GSD700 GNSS Receiver – features 440 channels for tracking signals from GPS, GLONASS, BeiDou, Galileo, and SBAS. The system offers centimeter-level, real-time kinematic (RTK), and sub-decimeter-level position accuracy with long-range RTK baselines of up to 100 km.
The ACC-GPS-NANO-ACTIVE and ACC-GPS-NANO-DR Dual Redundant GPS SBAS Receiver by Accord Software & Systems Inc.
The ACC-GPS-NANO-ACTIVE is a high-performance GPS-GAGAN receiver that supports 16 Acquisition and 16 Tracking channels. The system supports a 10 km/s velocity profile and works out of a single 5.0 V input supply consuming less than 500 mW. It has an RS-232 serial interface with NMEA 0183 message output and the PCB is available in a small form-factor for space constrained designs.
The ACC-GPS-NANO-DR Dual Redundant GPS SBAS Receiver consists of a pair of 32-channel GPS-SBAS receivers that operate fully independently while utilising a common antenna interface and power divider to split the GPS signals. Each path supports 16 Acquisition and 16 Tracking channels and a 10 Km/s velocity profile, providing precise 1PPS pulse output.
WARPSPACE GPS Receiver by WARPSPACE
WARPSPACE claims that its GPS receiver is the smallest and lightest GPS module in the world. The product is just 24.1 x 20.2 x 7.5mm and weighs 3g. It provides a 5-pin header interface and a position accuracy of 2.5m, while operating at a voltage of 3.3V and power of 45mA. The WARPSPACE GPS Receiver also supports GPS, GLONASS, QZSS, WAAS, EGNOS, MSAS, and GAGAN GNSS systems.
Dual Channel GPS Receiver by Meisei Electric
Meisei Electric’s GPS receiver uses low cost COTS hardware and is QZSS- and GPS-receivable. Software processing by CPU and FPGA with the flexibility to meet individual needs is available. Positioning of the spacecraft is achieved regardless of the attitude by dual-channel antenna.
GNSS Receiver Module (GPSRM 1) Kit by Pumpkin
The GPSRM 1 utilizes a NovAtel® OEM719-series high-performance 555-channel space-grade GNSS receiver to provide accurate position, navigation and timing (PNT) information. Full access to the entire NovAtel OEM7 API is provided via a selectable 3.3V LVTTL serial interface, along with PPS and VARF outputs. SupMCU provides telecommands and telemetry via SCPI over I2C, as well as both Vinti7 and SGP4 orbit propagators (OPs). The OEM719’s microUSB port is available at all times; it is primarily used in conjunction with NovAtel Connect software in a development environment and to update OEM719 firmware.
Phoenix GPS Receiver by DLR
The Phoenix GPS receiver is a 12-channel single-frequency receiver specifically designed for high-dynamics and space applications. The receiver is based on Zarlink’s advanced GP4020 baseband processor, which results in a small size and low power consumption. In combination with DLR’s proprietary firmware, the receiver offers precision measurements for advanced navigation applications as well as robust tracking, even under extreme dynamics. Three specific receiver versions (Phoenix-S/- XNS and Phoenix-HD) are offered to optimally support both orbital and ballistic missions.
SGR-Ligo by SSTL
The SGR-Ligo is SSTL’s miniaturised Space GNSS (Global Navigation Satellite System) Receiver that supports the Cubesat PC-104 standard. The SGR-Ligo is low mass, low power and delivers position, velocity and time to Low Earth orbit satellites.
It uses radiation tolerant core components and supports both dual antennae and 24+ channels capable of tracking GPS L1 signals, with options for GLONASS G1 and Galileo E1 signals. The SGR-Ligo supports multiple interface standards including UART, CAN and I2C, and can be powered from either 3V3 or 5V spacecraft buses. The SGR-Ligo also supports the use of passive antennas for even lower power requirements.
G-SPHERE-S GNSS Software Receiver by Syrlinks
This GNSS receiver (currently under development) is designed to be a high-performance device optimized for small platforms for which small volume, low mass and low power consumption are important parameters. The system is based on COTS components in order to exploit the performance of advanced technology developed for terrestrial applications and to reduce costs.
The GNSS receiver structure is organized around a reconfigurable architecture with the use of one FPGA associated with one DSP. The GNSS function is then split into two main parts according to the real-time requirements of the processing and navigation operations. The receiver is designed to process GPS (L1) and GALILEO (E1) (in option) signals simultaneously in the first version of the software and will be able to evolve in a second step to a dual-frequency mode, compatible with E5a/E1, or with E5b/E1.
OEM4-G2L by NovAtel
Measuring 60 millimeters by 100 millimeters, the OEM4-G2L is designed to meet the increasing need for smaller systems. At just 56 grams, this receiver offers many advanced features, including two serial ports supporting speeds of up to 230,400 bits per second, a USB port, and a configurable PPS output and event mark inputs. The OEM4-G2L is also ideal for power-conscious applications, consuming less than 1.6 Watts typically.
The Venus838FLPx GPS Receiver by SkyTraq Technology
The Venus838FLPx-SPC is a high performance, low cost, single chip GPS receiver targeting CubeSat, small satellite, and micro satellite space applications. It offers very low power consumption, high sensitivity, and best in class signal acquisition and time-to-first-fix performance. Venus838FLPx-SPC contains the necessary components of a complete GPS receiver, including GPS RF front-end, GPS baseband signal processor, 0.5ppm TCXO, 32.768kHz RTC crystal, RTC LDO regulator, and passive components.
It takes up only 100mm2 PCB footprint. Dedicated massive-correlator signal parameter search engine within the baseband enables rapid search of all the available satellites and acquisition of weak signal. An advanced track engine allows weak signal tracking and positioning in harsh environments. Venus838FLPx-SPC is low cost, easy to use, minimizes RF layout design issues.
The Sentinel™ M-Code GPS Receiver by General Dynamics
The General Dynamics’ Sentinel™ M-Code GPS Receiver is designed to provide a precise positioning service along with accurate velocity and time information for Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) applications. The performance and satellite visibility are enhanced through the use of dual antennas and each of the 64 GPS channels can be assigned to either antenna.
Thanks for reading! If you would like any further help identifying a GPS receiver for your specific needs, please file a request on our platform and we’ll use our global network of suppliers to find an option.