An overview of GPS receivers for small satellites


Selecting a GPS receiver for a cubesat or a small satellite can be a tricky challenge. In this post we take a look at some of the products

There is growing demand for Global Positioning System (GPS) receivers that enable small satellites to achieve attitude and orbit control, orbital transfers, and end-of-life deorbiting.

In this article we provide a gentle primer to the topic of selecting a GPS receiver for a smallsat mission and give an overview of some of the navigation and positioning products making waves in the global marketplace for space.

In the next few chapters we take a brief look at how GPS receivers work and discuss what key performance characteristics need to be taken into account when selecting a product for your operation. If you would instead like to skip down to view the product listings, please click here.

Do you know of any smallsat GPS receiver that we’ve missed? Please drop us a note at [email protected] or on Twitter. Alternatively, if you’d like to list your products and services on satsearch, get started here.

Please note that this aspect of the supply chain has recently been undergoing a number of changes with new suppliers and products coming to market – we will therefore keep this post updated over time with new product and service information. To stay up to date, please consider bookmarking this page and subscribing to our weekly newsletter at the link below.


Selecting the most appropriate GPS for a CubeSat or a small satellite can be a tricky challenge.

Rapid growth of the NewSpace sector has led to greater use of modular components and several manufacturers are now producing GPS receivers as independent products. Selecting the right GPS receiver is important for ensuring the ease of operations of your satellite.

In this article, we look at some of the factors that should be taken into account to make this decision. We also provide an overview of a number of GPS receivers on the market, all of which are listed on the satsearch platform to help you select the best option.

GPS receivers are ubiqitous in many ground-based applications, from large-scale industrial transport navigation systems to fitness trackers and smartphones. However, using GPS receivers in space is a much more challenging task compared to normal terrestrial use.

Most terrestrial applications use Commercial Off The Shelf (COTS) components designed for specific operations and featuring typical characteristics needed for ground-based use. The difference between such uses and space-based GPS is not just in the components used but also in the software embedded, as GPS receivers made for terrestrial use typically are not tuned to accommodate the large variations in the received signal Doppler frequencies that are usually the case with satellites orbiting the Earth.

Aside from such technical limitations there are also regulatory issues such as the requirements set by the International Traffic on Arms Regulations (ITAR) which do not allow GPS receivers to provide navigation outputs after they exceed the ITAR limits of 60,000 feet and 1,000 knots. Therefore, GPS receivers often come with export control restrictions that depend on the end-user requirements. Be sure to check with the suppliers if they are able to actually serve you before considering testing a particular GPS receiver at the design stage.

Despite the limitations GPS receivers have been shown to be very useful for a range of in-orbit processes such as:

  • Precise orbit determination
  • Onboard time synchronization and geocoding of payload information
  • Autonomous orbit control and maneuver planning
  • Spacecraft formation flying
  • Onboard attitude determination

Key performance criteria

Now that you’re armed with the knowledge of what a GPS receiver needs to do you can make an informed decision from the available products, based on your required performance characteristics.

Some of the potential key specifications and performance criteria to evaluate for each product are:

  • Number of channels
  • Number of antennae
  • Frequencies
  • Position accuracy
  • Velocity accuracy
  • Update rate
  • Power consumption
  • Time-To-First-Fix (TTFF)

These provide a snippet of the technical details that are necessary to evaluate as part of your selection process. In addition, there are the typical criteria for any major purchase such as; cost, delivery time, supplier reputation and location (particularly regarding any export controls, as mentioned above), contract details and maintenance conditions to take into account.

Finally, it’s important to note that selection of a GPS receiver for your satellite is an iterative process, as is the case for virtually every other component of your overall system.

GPS receivers on the market

In this section, you can find a range of GPS receivers available on the global market. These listings will be updated when new gps receiving products are added to the global marketplace for space at – so please check back for more or sign up for our mailing list for all the updates.

We have also put together overviews of X-band transmitters, S-band transmitters and S-band antennas to help you evaluate additional satellite communications systems.

Click on any of the links or images below to find out more about the systems. You can also submit a request for a quote, documentation or further information on each of the products listed or send us a more general query to discuss your specific needs, and we will use our global networks of suppliers to find a system to meet your specifications.

GNSS200 Series Global Navigation Receiver by Hyperion Technologies

The GNSS200 Global Navigation Satellite System (GNSS) receiver is a low mass, low power GNSS receiver for use in (small) satellites. It is designed specifically for use in CubeSat platforms, and it can also be used in conjunction with the iADCS-series of attitude determination and control systems as well as the iACS series of attitude control systems. It offers a multi-constellation output, and the standard version is delivered with a TTL UART output. It is designed to work either with active or passive antennae (to be defined at the time of ordering) and outputs NMEA-compatible data as standard. It is possible to qualify the units for use in larger satellites as well.

NGPS-01-422 and Cubesat GPS Receiver by NewSpace Systems

The NewSpace Systems NGPS-01-422 Receiver is a 12-channel hardware-based receiver which utilises a well-established GPS chipset. This GPS chipset has been successfully flown by a number of organisations over many years. Targeted towards low-cost SmallSat constellations, it has been adapted for space altitude and velocity through the use of custom software modifications.

NGPS-03-422 receiver fits the CubeSat form factor. An active GPS patch antenna can also be provided with the receiver. Additionally, the GPS circuitry at the heart of the receiver can also be deployed as a single mezzanine board to accompany the NewSpace Systems CubeSat attitude control system board or as a standalone boxed or unboxed version for cubesats.

The GPS/GLONASS receiver SX-NAV-03 by Sputnix

sputnix GPS/GLONASS receiver SX-NAV-03 on satsearch

Used to determine the position and speed of the spacecraft in an inertial coordinate system and set the timestamp. The GPS / GLONASS receiver has built on Sputnix’s many years of experience in ADCS systems design. The device has been designed to interface seamlessly with third-party on-board systems and enable rapid hardware and software integration into the spacecraft board with other Sputnix on-board systems. The system has a mass of 70g and provides a position accuracy of 30 m. It has a physical envelope of 70 mm x 50 mm x 20 mm, a maximum power consumption of 2.5 W and a supply voltage range of 6 – 36 V.

Celeste The GNSS receiver by Spacemanic

Celeste The GNSS receiver on satsearch

A reliable multi-GNSS receiver module with flight heritage on several space missions. The system suits the GPS, Glonass or Beidu global navigation satellite systems, and complies with selected ECSS norms. The receiver weighs 25g and has an average power consumption of ±100mW on a 3.3V or 5V power supply. It has an area of 67 x 42 mm and is compatible with a Spacemanic motherboard (PC/104 form factor). The supplier also provides dedicated integration assistance to ensure compatibility.

Dual Channel GPS Receiver by Meisei Electric

Meisei Electric’s GPS receiver uses low cost COTS hardware and is QZSS- and GPS-receivable. Software processing by CPU and FPGA with the flexibility to meet individual needs is available. Positioning of the spacecraft is achieved regardless of the attitude by dual-channel antenna.

The GPS-601 Satellite GNSS Receiver and GNSS-700 by SpaceQuest

The GPS-601 Satellite GNSS Receiver is a 120 channel GNSS receiver that tracks GPS, GLONASS, Galileo, and BeiDou. The GPS-601 contains an improved core and an expanded interface card which improves the components’ available features, accuracy, and compatibility, while still relying on the foundation of a space-qualified and proven design.

The GNSS-700 Series Satellite GNSS Receiver is an upgraded version of Space Quest’s GPS12-V1. It contains an improved core and an expanded interface board that improves the unit’s functionality, accuracy and compatibility, while still relying on the foundation of a space qualified and proven design.

GNSS Receiver Module (GPSRM 1) Kit by Pumpkin

The GPSRM 1 utilizes a NovAtel® OEM719-series high-performance 555-channel space-grade GNSS receiver to provide accurate position, navigation and timing (PNT) information. Full access to the entire NovAtel OEM7 API is provided via a selectable 3.3V LVTTL serial interface, along with PPS and VARF outputs. SupMCU provides telecommands and telemetry via SCPI over I2C, as well as both Vinti7 and SGP4 orbit propagators (OPs). The OEM719’s microUSB port is available at all times; it is primarily used in conjunction with NovAtel Connect software in a development environment and to update OEM719 firmware.

Phoenix GPS Receiver by DLR

The Phoenix GPS receiver is a 12-channel single-frequency receiver specifically designed for high-dynamics and space applications. The receiver is based on Zarlink’s advanced GP4020 baseband processor, which results in a small size and low power consumption. In combination with DLR’s proprietary firmware, the receiver offers precision measurements for advanced navigation applications as well as robust tracking, even under extreme dynamics. Three specific receiver versions (Phoenix-S/- XNS and Phoenix-HD) are offered to optimally support both orbital and ballistic missions.

SGR-Ligo and SGR-05P by SSTL

The SGR-Ligo is SSTL’s miniaturised Space GNSS (Global Navigation Satellite System) Receiver that supports the Cubesat PC-104 standard. The SGR-Ligo is low mass, low power and delivers position, velocity and time to Low Earth orbit satellites. It uses radiation tolerant core components and supports both dual antennae and 24+ channels capable of tracking GPS L1 signals, with options for GLONASS G1 and Galileo E1 signals. The SGR-Ligo supports multiple interface standards including UART, CAN and I2C, and can be powered from either 3V3 or 5V spacecraft buses. The SGR-Ligo also supports the use of passive antennas for even lower power requirements.

The SGR-05P is a miniaturised single antenna space GPS receiver that provides position, velocity and time in an OEM configuration for the tightest integration requirements on professional small satellites. The SGR-05P comprises the GPS receiver “engine” from within the SGR-07, and makes use of the host’s regulated power supply and TTL interfaces. The integrator must account for power, EMC, latch-up protection and shielding against radiation, resulting in a highly compact solution.

This GNSS receiver (currently under development) is designed to be a high-performance device optimized for small platforms for which small volume, low mass and low power consumption are important parameters. The system is based on COTS components in order to exploit the performance of advanced technology developed for terrestrial applications and to reduce costs.

The GNSS receiver structure is organized around a reconfigurable architecture with the use of one FPGA associated with one DSP. The GNSS function is then split into two main parts according to the real-time requirements of the processing and navigation operations. The receiver is designed to process GPS (L1) and GALILEO (E1) (in option) signals simultaneously in the first version of the software and will be able to evolve in a second step to a dual-frequency mode, compatible with E5a/E1, or with E5b/E1.

OEM4-G2L by NovAtel

Measuring 60 millimeters by 100 millimeters, the OEM4-G2L is designed to meet the increasing need for smaller systems. At just 56 grams, this receiver offers many advanced features, including two serial ports supporting speeds of up to 230,400 bits per second, a USB port, and a configurable PPS output and event mark inputs. The OEM4-G2L is also ideal for power-conscious applications, consuming less than 1.6 Watts typically.


WAPRPSPACE GPS Receiver on satsearch

WARPSPACE claims that its GPS receiver is the smallest and lightest GPS module in the world. The product is just 24.1 x 20.2 x 7.5mm and weighs 3g. It provides a 5-pin header interface and a position accuracy of 2.5m, while operating at a voltage of 3.3V and power of 45mA. The WARPSPACE GPS Receiver also supports GPS, GLONASS, QZSS, WAAS, EGNOS, MSAS, and GAGAN GNSS systems.

The Venus838FLPx GPS Receiver by SkyTraq Technology

Venus838FLPx GPS Receiver on satsearch

The Venus838FLPx-SPC is a high performance, low cost, single chip GPS receiver targeting CubeSat, small satellite, and micro satellite space applications. It offers very low power consumption, high sensitivity, and best in class signal acquisition and time-to-first-fix performance. Venus838FLPx-SPC contains the necessary components of a complete GPS receiver, including GPS RF front-end, GPS baseband signal processor, 0.5ppm TCXO, 32.768kHz RTC crystal, RTC LDO regulator, and passive components.

It takes up only 100mm2 PCB footprint. Dedicated massive-correlator signal parameter search engine within the baseband enables rapid search of all the available satellites and acquisition of weak signal. An advanced track engine allows weak signal tracking and positioning in harsh environments. Venus838FLPx-SPC is low cost, easy to use, minimizes RF layout design issues.

The ARGO-L1 GNSS Receiver Unit by Astrofein

ARGO-L1 GNSS Receiver Unit on satsearch

A redundant COTS-based GPS receiver unit that is tailored for positioning and timing applications for LEO missions. The product features a dual independent passive receive antenna system with passive combination of RF signals and configurable redundancy.

It is equipped with inrush current limitation and voltage/current monitoring and also has FDIR capability for timely reaction to system failures. The system’s navigation firmware and tracking channels are optimized for LEO missions and it is available in different mounting configurations to suit mission requirements.

The Sentinel™ M-Code GPS Receiver by General Dynamics

Sentinel™ M-Code GPS Receiver on satsearch

The General Dynamics’ Sentinel™ M-Code GPS Receiver is designed to provide a precise positioning service along with accurate velocity and time information for Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) applications. The performance and satellite visibility are enhanced through the use of dual antennas and each of the 64 GPS channels can be assigned to either antenna.

The ACC-GPS-NANO-ACTIVE and ACC-GPS-NANO-DR Dual Redundant GPS SBAS Receiver by Accord Software & Systems Inc.

Accord ACC-GPS-NANO-ACTIVE on satsearch
Accord ACC-GPS-NANO-DR Dual Redundant GPS SBAS Receiver on satsearch

The ACC-GPS-NANO-ACTIVE is a high-performance GPS-GAGAN receiver that supports 16 Acquisition and 16 Tracking channels. The system supports a 10 km/s velocity profile and works out of a single 5.0 V input supply consuming less than 500 mW. It has an RS-232 serial interface with NMEA 0183 message output and the PCB is available in a small form-factor for space constrained designs.

The ACC-GPS-NANO-DR Dual Redundant GPS SBAS Receiver consists of a pair of 32-channel GPS-SBAS receivers that operate fully independently while utilising a common antenna interface and power divider to split the GPS signals. Each path supports 16 Acquisition and 16 Tracking channels and a 10 Km/s velocity profile, providing precise 1PPS pulse output.

Thanks for reading! If you would like any further help identifying a GPS receiver for your specific needs, please file a request on our platform and we’ll use our global network of suppliers to find an option.

small satellite

related articles

Blog home

Hywel Curtis 10, June 2020

Satellite Electrical Power Systems (EPS) on the global marketplace for space

Hywel Curtis 19, May 2020

S-band antennas on the global marketplace for space

Hywel Curtis 14, May 2020

Launch separation systems for CubeSats and microsatellites