The Space Industry podcast – episode 7

Podcasts

The future for optical laser communications systems for satellites – with Hyperion Technologies

A discussion of current developments, and future opportunities, in optical communications for small satellites and other applications.

In this episode we speak with Bert Monna and Alexandra Sokolowski of Hyperion Technologies. Hyperion is a space company based in the Netherlands in Delft and specializes in high-performance bus components such as laser communications systems, on-board computers (OBCs), attitude control systems, and propulsion modules. It is also a satsearch member company and is part of AAC Clyde Space. In this episode we discuss:

  • How satellite optical communications work and what benefits it can bring compared to RF, as well as the trade-offs required
  • How optical system manufacturers are dealing with the need to enable more accurate pointing
  • What changes and innovations are occurring in the ground segment in order to meet the growing demand for laser up/down-linking
  • The potential extrapolation of Low Earth Orbit (EO) optical capabilities to higher orbits and deep space missions

About Hyperion’s products and services

CubeCat

DATASHEET

A laser communications model that enables a bidirectional space-to-ground communication link between a CubeSat and an optical ground station, with downlink speeds of up to 1 Gbps and uplink data rate of 200 Kbps.

GNSS200

DATASHEET

A GNSS receiver for use in small satellites. Designed specifically for use in CubeSat platforms, and small enough to fit almost any system. The GNSS200 has a mass of 3g, update rate of > 10 Hz and an operating temperature range of -40 to +85 °C.

iACS200

DATASHEET

An integrated attitude control system designed for small satellites with a 3U, or similar, CubeSat form factor. The system features 3 MTQ series magnetorquers and may additionally include 3 RW210 series reaction wheels.

iADCS200

iADCS400

DATASHEET

The iADCS400 matches the ST200 star tracker with the RW400 series reaction wheels, and the MTQ400 series magnetorquers. Combined with Berlin Space Technologies’ flight-proven control algorithms, it offers an entirely autonomous attitude control system, in the space of 5 standard CubeSat PCBs.

RW210 Series Reaction Wheel

DATASHEET

A reaction wheel designed for 1-3U CubeSats and similar platforms. Available in 3 models offering 1.5, 3.0 or 6.0 mN.m.s of angular momentum storage respectively in both directions. 0.1 mN.m of torque enables rapid slewing operations for smallsats.

RW400 Series Reaction Wheel

DATASHEET

A reaction wheel designed for 6-12U CubeSats and similar platforms. Available in 3 models offering 15, 30 or 50 mN.m.s of angular momentum storage respectively in both directions. Up to 12 mN.m of torque enables rapid slewing operations for smallsats.

PM200

DATASHEET

An in-space propulsion system for 3-12U CubeSats, and similar platforms, with zero propellant toxicity. The standard 1U configuration of the PM200 propulsion module can deliver in excess of 230 m/s of velocity increment to a 3U CubeSat of 4 kg at a nominal thrust level of 0.5 N.

IM200

DATASHEET

Based on the ST200 Star Tracker platform and featuring a dedicated high-speed USB2.0 interface, the IM200 is capable of capturing 5 frames per second at full resolution. A large internal buffer allows storage of up to 25 full-frame images, which can be compressed into JPEGs for fast previewing.

CP400.85

DATASHEET

A processing platform with a Linux-based operating system that allows users to run various algorithms as distinct, uploadable applications. Using the optional, radiation-tolerant, storage module users can store up to 7.5 Gb of data, and can optionally store over 64 GB of bulk data on 2 SD cards.

SAT12U

DATASHEET

The SAT series of CubeSat-platforms is a collaboration between Hyperion Technologies and GTM Advanced Structures for large CubeSats up to 36U. The platform is also available in sizes of 6U, 24U, and 36U, as well as customer-specific size.

SS200

DATASHEET

A 3g sun sensor with outer dimensions of 24.66 x 15.00 x 3.50 mm^3 and sampling power consumption rate of 2.5-4.0 mW. The SS200 has a 110° field of view (FOV) and sampling rate of up to 100 Hz.

ST200

DATASHEET

A fully autonomous star tracker with a mass of 42g and 600 mW nominal power consumption when running at 5 Hz update rate. The tracker provides attitude determination accuracy (3 σ) of < 30 arcseconds pitch and yaw and < 200 arcseconds roll. Co-developed with Berlin Space Technologies.

ST400

DATASHEET

A more advanced version of the ST200. The ST400 star tracker has a mass of 280g and < 700 mW nominal power consumption when running at 5 Hz update rate. The tracker provides attitude determination accuracy (3 σ) of < 10 arcseconds pitch and yaw and < 120 arcseconds roll. Co-developed with Berlin Space Technologies.

MTQ200 magnetorquer

A magnetorquer designed for 1-6U CubeSats, with a mass of 39.6g and power rating of 90 mW. The system provides a magnetic moment of 0.2 A m^2 and offers fine-grained dipole-moment strength control.

MTQ400 magnetorquer

A magnetorquer designed for 6-12U CubeSats, with a mass of 44.1g and power rating of 270 mW. The system provides a magnetic moment of 0.5 A m^2 and offers fine-grained dipole-moment strength control.

A magnetorquer designed for 50-200 kg satellites, with a mass of 395g and power rating of 3 W. The TRL 9 system has an RS422 data interface and offers fine-grained dipole-moment strength control.

cubesat
member spotlight
optical payload
satellite communication
supply chain

related articles

Blog home

Hywel Curtis 10, June 2020

Satellite Electrical Power Systems (EPS) on the global marketplace for space

Hywel Curtis 19, May 2020

S-band antennas on the global marketplace for space

Hywel Curtis 14, May 2020

Launch separation systems for CubeSats and microsatellites